357 research outputs found

    Cheating and the evolutionary stability of mutualisms

    Get PDF
    Interspecific mutualisms have been playing a central role in the functioning of all ecosystems since the early history of life. Yet the theory of coevolution of mutualists is virtually nonexistent, by contrast with well-developed coevolutionary theories of competition, predator–prey and host–parasite interactions. This has prevented resolution of a basic puzzle posed by mutualisms: their persistence in spite of apparent evolutionary instability. The selective advantage of 'cheating', that is, reaping mutualistic benefits while providing fewer commodities to the partner species, is commonly believed to erode a mutualistic interaction, leading to its dissolution or reciprocal extinction. However, recent empirical findings indicate that stable associations of mutualists and cheaters have existed over long evolutionary periods. Here, we show that asymmetrical competition within species for the commodities offered by mutualistic partners provides a simple and testable ecological mechanism that can account for the long-term persistence of mutualisms. Cheating, in effect, establishes a background against which better mutualists can display any competitive superiority. This can lead to the coexistence and divergence of mutualist and cheater phenotypes, as well as to the coexistence of ecologically similar, but unrelated mutualists and cheaters

    Adaptive Dynamics and Evolving Biodiversity

    Get PDF
    Population viability is determined by the interplay of environmental influences and individual phenotypic traits that shape life histories and behavior. Only a few years ago the common wisdom in evolutionary ecology was that adaptive evolution would optimize a population’s phenotypic state in the sense of maximizing som

    The Evolution of Cooperation in Spatially Heterogeneous Populations

    Get PDF
    A challenging problem in sociobiology is to understand the emergence of cooperation in a nonsocial world. Recent models of the iterated Prisoner's Dilemma (IPD) game conclude that population mixing due to individual mobility limits cooperation; however, these models represent space only implicitly. Here we develop a dynamical IPD model where temporal and spatial variations in the population are explicitly considered. Our model accounts for the stochastic motion of individuals and the inherent nonrandomness of local interactions. By deriving a spatial version of Hamilton's rule, we find that a threshold level of mobility in selfish always-defect (AD) players is required to beget invasion by social 'tit for tat'(TFT) players. Furthermore, the level of mobility of successful TFT newcomers must be approximately equal to or somewhat higher than that of resident defectors. Significant mobility promotes the assortment of TFT pioneers on the front of invasion and of AD intruders in the core of a cooperative cluster. It also maximizes the likelihood of TFT retaliation. Once this first step whereby TFT takes over AD is completed, more generous and perhaps more suspicious strategies may outperform and displace TFT. We derive the conditions under which this continued evolution of more robust cooperative strategies occurs

    Universal Power Laws Govern Intermittent Rarity in Communities of Interacting Species

    Get PDF
    The temporal dynamics of many populations involve intermittent rarity, that is, the alternation, over variable periods of time, of phases of extremely low abundance, and short outbreaks. In this paper we show that intermittent rarity can arise in simple community models as a result of competitive interactions within and between species. Intermittently rare species are typified as weak invaders in fluctuating communities. Although the dynamics of intermittent rarity are highly irregular, the distribution of time spent in phases of rarity (`rarity times') involves strong regularity. Specifically, intermittent rarity is governed by a well-defined power law. The scaling exponent (-3/2) is a universal feature of intermittent rarity: it does not depend on species demographic parameters; it is insensitive to environmental stochasticity; and the same exponent is found in very different models of nonstructured populations. The distribution of rarity times implies that the dynamics of rarity have no characteristic timescale. Yet in practice the universal scaling law offers a general form of prediction in which one can calculate the frequency of occurrence of rarity phases of any given duration. Data on marine fish communities support the prediction of a -3/2 power law underlying the dynamics of intermittently rare species. The scale-free dynamics reported here place intermittent rarity in the same class as the critical states of other nonlinear dynamical systems in the physical sciences. At a critical state, general laws govern the systems' dynamics irrespective to the specific details of the interactions between constituents

    Ecological Bistability and Evolutionary Reversals under Asymmetrical Competition

    Get PDF
    How does the process of life-history evolution interplay with population dynamics? Almost all models that have addressed this question assume that any combination of phenotypic traits uniquely determine the ecological population state. Here we show that if multiple ecological equilibria can exist, the evolution of a trait that relates to competitive performance can undergo adaptive reversals that drive cyclic alternation between population equilibria. The occurrence of evolutionary reversals require neither environmentally-driven changes in selective forces, nor the co-evolution of interactions with other species. The mechanism including evolutionary reversals is two-fold. First, there exist phenotypes near which mutants can invade and yet fail to become fixed; although these mutants are eventually eliminated, their transitory growth causes the resident population to switch to an alternative ecological equilibrium. Second, asymmetrical competition causes the direction of selection to revert between high and low density. When ecological conditions for evolutionary reversals are not satisfied, the population evolves toward a steady state of either low or high abundance, depending on the degree of competitive asymmetry and environmental parameters. A sharp evolutionary transition between evolutionary stasis and evolutionary reversals and cycling can occur in response to a smooth change in ecological parameters, and this may have implications for our understanding of size-abundance patterns

    Invasion Fitness and Adaptive Dynamics in Spatial Population Models

    Get PDF
    Disentangling proximate and ultimate factors of dispersal and assessing their relative effects requires an appropriate measure of fitness. Yet there have been few theoretical attempts to coherently define fitness from demographic "first principles", when space-related traits like dispersal are adaptive. In this chapter, we present the framework of adaptive dynamics and argue that "invasion fitness" is a robust concept accounting for ecological processes that operate at the individual level. The derivation of invasion fitness for spatial ecological scenarios is presented. Spatial invasion fitness involves the effect of neighbors on a focal individual, mediated by coefficients analogous to relatedness coefficients of population genetics. Spatial invasion fitness can be used to investigate the joint evolution of dispersal and altruism - two traits that both have a direct influence on, and are strongly responsive to, the spatial distribution of individuals. Our deterministic predictions of dispersal and altruism evolution based on spatial invasion fitness are in good agreement with stochastic individual-based simulations of the mutation-selection process acting on these traits

    Coevolutionary Dynamics and the Conservation of Mutualisms

    Get PDF
    The vast majority of studies in conservation biology focus on a single species at a time. However, many of the anthropogenic threats that species face occur via disrupted or enhanced interactions with other organisms. According to one recent analysis, interactions with introduced species, such as predators, parasites, and pathogens, are the eighth leading cause of species endangerment worldwide; they are the primary cause of endangerment in Hawaii and Puerto Rico (Czech and Krausman 1997). Altering interactions not only has ecological effects, but also it can generate selective pressures and evolutionary responses, which may either favor or disfavor the evolutionary persistence of species and interactions. An increased focus on interspecific interactions will thus enlighten our efforts to conserve species and, more pointedly, our ability to understand when species will and will not respond evolutionarily to conservation threats. Such a focus is also critical for efforts to conserve communities as units, because interactions are the crucial and poorly understood link between threatened species and threatened species assemblages. Different types of interspecific interactions are subject to, and generate, some-what different ecological and evolutionary threats. Predator and pathogen introductions can lead to reduction, local exclusion, or extinction of native species (Savidge 1987; Schofield 1989; Kinzie 1992; Steadman 1995; Louda et al. 1997). Rapid evolution in the enemies and/or the victims may also result (Dwyer et al. 1990; Singer and Thomas 1996; Carroll et al. 1998)

    Timescales of population rarity and commonness in random environments

    Get PDF
    This paper investigates the influence of environmental noise on the characteristic timescale of the dynamics of density-dependent populations. General results are obtained on the statistics of time spent in rarity (i.e.\ below a small threshold on population density) and time spent in commonness (i.e. above a large threshold). The nonlinear stochastic models under consideration form a class of Markov chains on the state space ]0,∞[]0, \infty[ which are transient if the intrinsic growth rate is negative and recurrent if it is positive or null. In the recurrent case, we obtain a necessary and sufficient condition for positive recurrence and precise estimates for the distribution of times of rarity and commonness. In the null recurrent, critical case that applies to ecologically neutral species, the distribution of rarity time is a universal power law with exponent −3/2-3/2. This has implications for our understanding of the long-term dynamics of some natural populations, and provides a rigorous basis for the statistical description of on-off intermittency known in physical sciences
    • …
    corecore